Abstract

Bundles of single-walled carbon nanotubes (SWCNTs) prepared by plasma torch method and further purified, are deposited over a glass coverslip to estimate the spatial resolution of tip-enhanced Raman spectroscopy measurements. For this purpose, near-field Raman maps and spectra of isolated bundles of carbon nanotubes are collected using optimized experimental conditions such as a tightly focused beam using a 1.4 numerical aperture oil immersion microscope objective and a gold coated atomic force microscope probe illuminated by a radially polarized 632.8 nm wavelength to selectively excite the localized surface plasmon confined at the extremity of the tip. The near-field nature of the collected Raman signals is evaluated through measuring the decay of the Raman signal with respect to the tip-sample separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call