Abstract

Carbon nanotubes are desirable components of nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. In this study, dielectrophoresis, a potential high-rate nanomanufacturing process, was used to assemble single-walled carbon nanotube (SWCNT) bundles suspended over a trench. The intent was to assemble a single SWCNT bundle between two electrodes. However, it was observed that when two or more SWCNT bundles assembled across the trench, the bundles were attached together in a portion of the suspended section. This study models the separation and re-adhesion processes of two adhered SWCNT bundles as their internal tensions are varied using an atomic force microscope (AFM) tip. Two devices were selected with distinct SWCNT bundles. Observation of the force–distance measurements through applying an AFM tip at the middle of the suspended SWCNT bundles, in conjunction with continuum mechanics modelling, allowed the work of adhesion between the two nanotube bundles to be determined. As the force was applied by the AFM tip, the tension induced in each bundle increases sufficiently to partially overcome the adhesion between the bundles, thereby decreasing the adhesive length. The adhesive length then recovers due to the decrease in the induced tension during the unloading process. The average value of the work of adhesion between two adhered SWCNT bundles was determined to be 0.37 J m−2 according to the experimental data and modelling results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call