Abstract

The electronic structure of metallic Sn, polycrystalline Sn oxides, and (110) natural single crystal SnO2 (cassiterite) was studied by high resolution measurements of core and valence photoemission, photoinduced Auger spectra, and energy loss spectra. The advantage of in vacuo scraping in obtaining SnO surfaces is shown in comparison with surface cleaning by ion sputtering. Valence band x-ray photoemission spectroscopy spectra are interpreted by a cluster-type discrete variational Xα molecular orbital model, revealing the change in the electronic structure which leads to an increased conductivity. The use of the Auger parameter approach in gaining information on the initial and final state effects, ligand polarizability, and final state hole–hole repulsion energies are demonstrated for the case of tin oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.