Abstract

The industrialization of Laser Additive Manufacturing (LAM) is challenged by the undesirable microstructures and high residual stresses originating from the fast and complex solidification process. Non-destructive assessment of the mechanical performance controlling deformation patterning is therefore critical. Here, we use Dark Field X-ray Microscopy (DFXM) to map the 3D subsurface intragranular orientation and strain variations throughout a surface-breaking grain within a directed energy deposition nickel superalloy. DFXM results reveal a highly heterogenous 3D microstructure in terms of the local orientation and lattice strain. The grain comprises ≈ 5 μm-sized cells with alternating strain states, as high as 5 ×10−3, and orientation differences <0.5°. The DFXM results are compared to Electron Backscatter Diffraction measurements of the same grain from its cut-off surface. We discuss the microstructure developments during LAM, rationalising the development of the deformation patterning from the extreme thermal gradients during processing and the susceptibility for solute segregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.