Abstract

AbstractIn recent years, there has been tremendous interest in all-printed electronics as a means of achieving ultra-low-cost electronic circuits with uses in displays and disposable electronics applications such as RFID tags. While there have been a few demonstrations of printed organic transistors to date, there has been little work on the associated passive component and interconnection technologies required to enable the development of all-printed RFID circuits. In particular, low-resistance conductors are crucial to achieve the high-Q inductors necessary for RFID. Here, we demonstrate inkjetted nanoparticle-Au conductors on plastic with sheet resistances as low as 0.03 ohms/square. We describe the optimization of the jetting parameters, and their impact on final film morphology and electrical properties. We also demonstrate a bridging technology based on an inkjetted polyimide interlevel dielectric. Using this process, we demonstrate multilevel interconnect and passive component structures including conductor patterns, crossover bridges, and tapped planar spiral inductors. Together, these represent an important step towards the realization of all-printed RFID.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.