Abstract

AbstractLow-resistance printed conductors are crucial for the development of ultra-low cost electronic systems such as radio frequency identification tags. Low resistance conductors are required to enable the fabrication of high-Q inductors, capacitors, tuned circuits, and interconnects. Furthermore, conductors of appropriate workfunction are also required to enable fabrication of printed Schottky diodes, necessary for rectification in RFID circuits. Last year, we demonstrated the formation of low-resistance conductive printed structures using gold nanoparticles. Here we demonstrate, for the first time, technologies for formation of printed conductors using silver and copper nanoparticles. These are particularly advantageous for several reasons. First, both silver and copper offer a 2X reduction in sheet resistance over gold, resulting in improved interconnect performance and inductor Q. Second, the material costs associated with both silver and copper are expected to be significantly cheaper than gold. Third, the workfunction of silver enables the fabrication of all-printed Schottky diodes with a silver rectifying contact to many common printable organic semiconductors.Solutions of organic-encapsulated silver and copper nanoparticles may be printed and subsequently annealed to form low-resistance conductor patterns. We describe novel processes for forming silver and copper nanoparticles, and discuss the optimization of the printing/annealing processes to demonstrate plastic-compatible low-resistance conductors. By optimizing both the size of the nanoparticle and the encapsulant sublimation kinetics, it is possible to produce particles that anneal at low-temperatures (<150 °C) to form continuous films having low resistivity and appropriate workfunction for formation of rectifying contacts. This represents a major component required for all- printed RFID.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.