Abstract

Quantitative efficacies of several methods for stacking fault (SF) reduction are evaluated using Monte Carlo (MC) simulation. SF density on a 3C–SiC {001} surface depends on interactions of adjoining SFs: annihilation between counter pairs of SFs and termination by orthogonal SF pairs. However, SFs are not entirely eliminated when growth occurs on undulant-Si and switch back epitaxy (SBE) due to spontaneous SF collimation that suppresses the annihilation probability of counter SFs. The MC simulation also reveals the efficacy of SF reduction method which includes the growth of 3C–SiC on finite area bounded by side walls. One can theoretically reduce the SF density below 100 cm-1 on 3C–SiC {001} surface. A practical way for eliminating the SF by termination at side walls is demonstrated, and it clearly exhibits that the SF density can be reduced under 120 cm-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.