Abstract

To quantitatively evaluate the efficacy of stacking fault (SF) reduction methods, Monte Carlo simulations are carried out to reveal the SF distribution on a 3C–SiC (001) surface. SF density decreases with increasing epitaxial layer thickness and reducing size of the substrates. Additionally, SF density depends on interactions between adjoining SFs: annihilation of counter SF-pairs or termination of orthogonal SF-pairs. However, the SF is not entirely eliminated when growth occurs on undulant-Si or switchback epitaxy due to “spontaneous SF collimation”. The simulation shows that effective SF reduction methods, those that enhance the SF termination or annihilation, can theoretically attain the SF density on 3C–SiC (001) below 100 cm-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.