Abstract

AbstractBoth high pyroelectric coefficient and figure of merits of ferroelectric materials are desirable for infrared detection. In this work, we prepared Pb0.99Nb0.02[(Zr0.57Sn0.43)1−xTix]0.98O3 (0.060 ≤ x ≤ 0.080) ceramics, and the microstructure and electric properties were studied systematically. It is observed that the composition x = 0.07 shows enhanced pyroelectric properties around ambient temperature due to the ferroelectric–antiferroelectric phase transition, with the pyroelectric coefficient p = 6.83 × 10−4 C m−2 K−1 and the figures of merit Fi = 5.04 × 10−10 m V−1, Fv = 7.61 × 10−2 m2 C−1, and Fd = 3.46 × 10−5 Pa−1/2 at room temperature and the highest pyroelectric coefficient of 695.5 × 10−4 C m−2 K−1 and Fi = 1410.46 × 10−10 m V−1, Fv = 1587.39 × 10−2 m2 C−1, and Fd = 1182.94 × 10−5 Pa−1/2 at 36.7°C. These values are superior to other pyroelectric materials. These results indicate that this system is a promising pyroelectric material for the applications of infrared detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.