Abstract

The pyroelectric coefficients of laminate composites under short circuit condition have been investigated by analytical modeling and numerical simulations. Indicators for various pyroelectric/non-pyroelectric material pairs that can be utilized to determine their pyroelectric coefficient enhancement credentials have been identified. Six pyroelectric materials were paired with six non-pyroelectric/elastic materials and their pyroelectric coefficient enhancement potential and figure of merit for efficiency were investigated. The best performing partnership out of the 36 pairs was lead zirconate titanate (PZT5H)-chlorinated polyvinyl chloride thermoplastic (CPVC) for thickness ratios (R) below 0.09 and PZT5H-zinc for R larger than 0.09 with both demonstrating total pyroelectric coefficient of approximately −20×10−4 C m−2 K−1 at R=0.09, which corresponds to approximately 300% increase in the coefficient. PZT5H-CPVC also showed maximum of 800% rise in the pyroelectric coefficient while figure of merit for efficiency indicated up to twentyfold increase in its electrical response output per given thermal stimuli when compared to that of PZT5H by itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.