Abstract

Camera calibration is the most important aspect of computer vision research. To address the issue of insufficient precision, therefore, a high precision calibration algorithm for binocular stereo vision camera using deep reinforcement learning is proposed. Firstly, a binocular stereo camera model is established. Camera calibration is mainly divided into internal and external parameter calibration. Secondly, the internal parameter calibration is completed by solving the antihidden point of the camera light center and the camera distortion value of the camera plane. The deep learning fitting value function is used based on the internal parameters. The target network is established to adjust the parameters of the value function, and the convergence of the value function is calculated to optimize reinforcement learning. The deep reinforcement learning fitting structure is built, the camera data is entered, and the external parameter calibration is finished by continuous updating and convergence. Finally, the high precision calibration of the binocular stereo vision camera is completed. The results show that the calibration error of the proposed algorithm under different sizes of checkerboard calibration board test is only 0.36% and 0.35%, respectively, the calibration accuracy is high, the value function converges quickly, and the parameter calculation accuracy is high, the overall time consumption of the proposed algorithm is short, and the calibration results have strong stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.