Abstract

This study demonstrates a novel application of laser-induced graphene (LIG) as a reusable conductive particulate matter (PM) filter. Four types of LIG-based filters were fabricated based on the laser-induced pyrolysis of thin polyimide (PI) sheets, each pyrolyzed on either a single side or both sides, with or without densification. The LIG filters exhibited a high removal efficiency while maintaining minimal pressure drop compared to a commercial fiberglass filter. The densified LIG (dLIG) filters displayed a higher PM2.5 removal efficiency (>99.86%) than regular LIG filters. The dLIG filters also exhibited excellent durability when tested for washability by ultrasonication in tap water. After being cleaned and left to dry, the structures of the dLIG filters were well-maintained; their filtration efficiencies were also well-maintained (less than a 7% change in PM2.5 removal efficiency), and their resistances only marginally increased (less than a 7% increase after five uses). These results demonstrate the robustness and reusability of the dLIG filters and the accessibility of their cleaning (not requiring aggressive cleaning agents). These promising features will enable the application of LIG in economical, scalable, and high-performance air cleaning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.