Abstract
This study investigates the scratch response of α-phase commercially pure titanium (cp-Ti) produced via wire arc directed energy deposition (WDED), focusing on the thermal history and directional effects. Progressive scratch tests (1–50 N) revealed heterogeneous wear properties between the top and bottom layers, with the top layer exhibiting higher material recovery (58 ± 5%) and wear volume (5.02 × 10−3 mm3) compared to the bottom layer (42 ± 5% recovery, 4.46 × 10−3 mm3), attributed to slower cooling rates and coarser grains enhancing ductility. The variation in the properties stems from the thermal gradient generated during WDED. Electron backscatter diffraction analysis showed higher kernel average misorientation (KAM) in the bottom layer (0.84° ± 0.49° vs. 0.51° ± 0.44°), affecting plasticity by reducing dislocation and twin boundary mobility. No significant differences were observed between longitudinal and transverse orientations, with coefficients of friction averaging 0.80 ± 0.12 and 0.79 ± 0.13, respectively. Abrasive wear dominated as the primary mechanism, accompanied by subsurface plastic deformation. These findings highlight the significant influence of WDED thermal history in governing scratch resistance and deformation behavior, providing valuable insights for optimizing cp-Ti components for high-performance applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have