Abstract
We report a flexible thin film transistor (flex-TFT) fabricated on a commonly available polyimide (Kapton®) tape with a channel of highly textured nanocrystalline ZnO film grown by pulsed laser deposition. The flex-TFT with an electric double layer (EDL) gate insulator shows a low threshold for operation (Vth ≤ 1 V), an ON/OFF ratio reaching ≈107 and a subthreshold swing ≈75 mV/dec. The superior performance is enabled by a high saturation mobility (μs ≈ 70 cm2/V s) of the highly textured nanocrystalline channel. The low Vth arises from large charge density (≈1014/cm2) induced into the channel by EDL gate insulator. The large charge density induced by the EDL gate dielectric also enhances the Hall mobility in the film and brings down the sheet resistance by nearly 2 orders, which leads to large ON/OFF ratio. The flex-TFT operation can be sustained with reproducibility when the TFT is bent down to a radius of curvature ≈2 cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.