Abstract

Elliptic Curve Encryption (ECC) has been widely used in the field of digital signatures in communication security. ECC standards and the diversification of application scenarios put forward higher requirements for the flexibility of ECC processors. Therefore, it is necessary to design a flexible and reconfigurable processor to adapt to changing standards. The cryptographic processor chip designed in this paper supports the choice of prime and binary fields, supports the maximum key length of 576 bits, uses microcode programming to achieve reconfigurable function, and significantly improves the flexibility of the dedicated cryptographic processor. At the same time, the speed of modular multiplication and modular division can be greatly improved under the condition of keeping the low level of hardware resources through a carefully designed modular unit of operation. After using FPGA for hardware implementation, it is configured into a 256-bit key length. The highest clock frequency of this design can reach 55.7MHz, occupying 12425LUTS. Compared with a similar design, the performance is also greatly improved. After MALU module optimization design, modular multiplication module division also has significant advantages in computing time consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call