Abstract

Nanoscale aluminium (nAl)-based composites find important applications in propellant, explosives and pyrotechnics, and the improved combustion efficiency is always desirable but challenging. A core-shell nAl@CuO composite with improved combustion performance was prepared by means of a biological interfacial layer, which is inspired by the fast polymerization and strong adhesion of juglone and tannic acid in walnut peel juice. It is found that interfacial layer contains phenolic hydroxyl and amino groups, which could interact with nAl and introduce the growth of CuO crystal, respectively. Obtained nAl@CuO shows higher stability but 1.2 times more heat release than that of the mechanically mixed nAl/CuO. In addition, nAl@CuO also has 5 times faster burning rate than the mechanically mixed one. It is believed that interfacial layer hindered the direct contact of reactants but improved mass transport/diffusion efficiency in nAl@CuO. Thus, Al based composites with higher stability and superior combustion efficiency could be obtained by this interfacial layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call