Abstract
In the quest for high-energy-density lithium metal batteries (LMBs), the stabilization of lithium (Li) metal anodes during fast charging remains a formidable challenge. In this study, a novel copolymer, Poly(methyl methacrylate-co-styrene) (namely PMS) is synthesized and blended with Poly(vinylidene fluoride) to fabricate a porous gel polymer electrolyte (GPE, namely PMS-PVDF) through the nonsolvent-induced phase separation technique, which significantly enhances the electrochemical stability and fast-charging capabilities of LMBs. The developed GPE exhibits a high ionic conductivity of 5.62 mS cm−1, thereby reducing the formation of detrimental Li dendrites and leading to over 400 h stripping/plating process at 0.5 mA cm−2. Extensive electrochemical tests show that the LMBs with the obtained PMS-PVDF GPE achieve exceptional cycle stability over 600 and 1000 cycles at the C-rates of 0.5 and 3 C, respectively, outperforming traditional electrolytes. Furthermore, the ultra-stability of the quasi-solid-state electrolyte is demonstrated in a 375 mAh pouch cell setup, suggesting an essential trait for the practical application of high-power devices. This work marks a pivotal contribution to the field of energy storage, delivering insights and a clear methodology that pave the way for the development of next-generation LMBs poised for commercial viability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have