Abstract

We present amorphous indium-gallium-zinc oxide Schottky diodes with unprecedented current densities of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> and 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at forward biases of 1.5 and 5 V, respectively. The diode presents a high rectification ratio of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">10</sup> at ±2 V, which is essential for suppressing the sneak current of not-selected cells in the memory array. In addition, we show that the diode complies with the demanding performance of memory applications. The device degradation, given by a 30% reduction of its forward current after 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> s of continuous bias stress or 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> pulses cycles, was studied via I-V and C-V measurements and can be attributed to trapping of electrons at deep acceptor levels, which increases the diode built-in potential. Finally, we show that the device is stable upon thermal stress at 300 °C for 1 h, which opens the possibility of further processing and integration with the memory cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call