Abstract

We present high-order variational Lagrangian finite element methods for compressible fluids using a discrete energetic variational approach. Our spatial discretization is mass/momentum/energy conserving and entropy stable. Fully implicit time stepping is used for the temporal discretization, which allows for a much larger time step size for stability compared to explicit methods, especially for low-Mach number flows and/or on highly distorted meshes. Ample numerical results are presented to showcase the good performance of our proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.