Abstract
In this paper, we introduce a high-order accurate finite element method for incompressible variable density flow. The method uses high-order Taylor-Hood velocity-pressure elements in space and backward differentiation formula (BDF) time stepping in time. This way of discretization leads to two main issues: (i) a saddle point system that needs to be solved at each time step; (ii) a stability issue when the viscosity of the flow goes to zero or if the density profile has a discontinuity. We address the first issue by using Schur complement preconditioning and artificial compressibility approaches. We observed similar performance between these two approaches. To address the second issue, we introduce a modified artificial Guermond-Popov viscous flux where the viscosity coefficients are constructed using a newly developed residual-based shock-capturing method. Numerical validations confirm high-order accuracy for smooth problems and accurately resolved discontinuities for problems in 2D and 3D with varying density ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.