Abstract

Though anodes with high Li gravimetric capacities, beyond commercial graphite, have been intensively studied, gravimetric capacity does not precisely reflect the performance of a packed cell. Li anodes with high mass loadings, which can achieve high areal capacities, are required for many commercial applications. Herein, anodes with high mass loadings were fabricated using two-dimensional transition metal carbides (MXenes). Powders of the latter were cold pressed, without binders, at a pressure of 1GPa, to create ∼300μm thick, free-standing discs. When Ti3C2 was used as the anode for lithium, the initial reversible areal capacity was ∼15mAh/cm2, which decreased to 5.9mAh/cm2 after 50 cycles, but the decrease after the first ∼20 cycles was very gradual. The latter is one of the highest values ever reported to date. When Nb2C was used as the anode instead, the initial reversible capacity was ∼16mAh/cm2; this value decreased to 6.7mAh/cm2 after 50 cycles, which is about a 14% increase compared to Ti3C2. As the research on MXenes for lithium ion batteries has just begun, there is certainly room for further improving their electrochemical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.