Abstract

Geometrically well-defined Cu6Sn5 thin films were used as a model system to estimate the diffusion depth and diffusion pathway requirements of Na ions in alloy anodes. Cu6Sn5 anodes have an initial reversible capacity towards Li of 545 mA h g(-1) (Li3.96Sn or 19.8 Li/Cu6Sn5), close to the theoretical 586 mA h g(-1) (Li4.26Sn), and a very low initial irreversible capacity of 1.6 Li/Cu6Sn5 (Li0.32Sn). In contrast, the reaction with Na is limited with a reversible capacity of 160 mA h g(-1) compared to the expected 516 mA h g(-1) (Na3.75Sn). X-ray diffraction and (119)Sn-Mössbauer spectroscopy measurements show that this limited capacity likely results from the restricted diffusion of Na into the anode nanoparticles and not the formation of a low Na-content phase. Moreover, our results suggest that the η-Cu6Sn5 alloy should have optimized particle sizes of nearly 10 nm diameter to increase the Na capacity significantly. An alternative system consisting of a two-phase mixture of Cu6Sn5 and Sn of nominal composition 'Cu6Sn10' has been studied and is able to deliver a larger initial reversible storage capacity of up to 400 mA h g(-1). Finally, we have demonstrated that the presence of Cu in Cu6Sn5 and 'Cu6Sn10' suppresses the anomalous electrolyte decomposition normally observed for pure Sn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.