Abstract

Flip chip bump cracking was observed after Si die attach reflow on the organic substrate of a module package. High-lead bump and eutectic SnPb cladding were used on Si die and the substrate sides, respectively. The reflow peak temperature was 260 °C for compatibility with passive components attach using lead-free solder. Flip chip bump cracking occurred at high-lead solder close to the die side. The cracking was eliminated by lowering the reflow peak temperature down to 225 °C. Main cause of the cracking at 260 °C reflow was attributed to the extensive Sn diffusion into high lead bump. This decreased the melting point of the high-lead solder around the die side, which in turn worsened the adhesion between solder and die due to the coexistence of solid and liquid. Diffusion length estimation showed both of the liquid- and solid-state diffusions of Sn. Crack gap in the solder bump was consistent with thermal expansion mismatch between Si die and organic substrate. The bump cracking was mitigated by use of 225 °C reflow, limiting Sn diffusion and providing a good integrity of high lead bumps on die side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.