Abstract

As there is continuous demand for miniaturization of electronic devices, flip chip technology is predominantly used for high density packaging. The technology offers several advantages like excellent electrical performance and better heat dissipation ability. Original invention of flip chip packaging utilized ceramic substrates and high lead bumps. Low cost commercialization of this packaging technology, however, required organic laminate substrates coupled with SnPb eutectic bumped interconnects on the die side. While organic laminate flip chip packaging may be a good option for many low power applications, current carrying capability of the eutectic bumped interconnect causes a catastrophic failure mechanism called electromigration. Previously, researchers have identified and addressed few issues regarding electromigration. Electomigration leads to the formation of metal voids in the conductors which eventually increases the resistance drop across the conductor causing electrical opens. Electromigration is very significant at high current densities. Temperature is the other parameter of concern for electromigration. High current density causes temperature to rise due to Joule heating, there by reducing the life of package. In order to determine the factors responsible for high current densities, we formed a full factorial design of experiments (DOE) that contained parameters such as passivation opening, UBM size, UBM thickness and trace width. Finite Element Analysis (FEA) was performed in order to study the effect of above parameters on current crowding and temperature in the bumped interconnects. Based on the results, hierarchy of the most important parameters to be considered while selecting the appropriate flip chip technology is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.