Abstract

This paper reports the experimental findings of void formation in eutectic and lead-free solder joints of flip-chip assemblies. A previous theory indicated that the formation of voids is determined by the direction of heating. The experiments were designed to examine the size and location of voids in the solder samples subject to different heat flux directions. A lead-free solder (Sn-3.5Ag-0.75Cu) and a eutectic solder (63Sn37Pb) were employed in the experiments. Previous experiments [Wang, D., and Panton, R. L., 2005, “Experimental Study of Void Formation in High-Lead Solder Joints of Flip-Chip Assemblies,” ASME J. Electron. Packag., 127(2), pp. 120–126; 2005, “Effect of Reversing Heat Flux Direction During Reflow on Void Formation in High-Lead Solder Bumps,” ASME J. Electron. Packag., 127(4), pp. 440–445] employed a high lead solder. 288 solder bumps were processed for each solder. Both eutectic and lead-free solder have shown fewer voids and much smaller void volume than those for high-lead solder. Compared with lead-free solder, eutectic solder has a slightly lower void volume and a lower percentage of defective bumps. For both eutectic and lead-free solders, irrespective of the cooling direction, heating solder samples from the top shows fewer defective bumps and smaller void volume. No significant effect on void formation for either eutectic or lead-free solder was found via reversing the heat flux direction during cooling. Unlike high-lead solder, small voids in eutectic or lead-free solder comprised 35-88% of the total void volume. The final distribution of voids shows a moderate agreement with thermocapillary theory, indicating the significance of the temperature gradient on the formation of voids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.