Abstract

By employing the exact diagonalization method, we investigate the high-harmonic generation (HHG) of the correlated systems under the strong laser irradiation. For the extended Hubbard model on a periodic chain, HHG close to the quantum critical point (QCP) is more significant compared to two neighboring gapped phases (i.e., charge-density-wave and spin-density wave states), especially in low frequencies. We confirm that the systems in the vicinity of the QCP are supersensitive to the external field and more optical-transition channels via excited states are responsible for HHG. This feature holds the potential of obtaining high-efficiency harmonics by making use of materials approaching QCP. Based on the two-dimensional Haldane model, we further propose that the even- or odd-order components of generated harmonics can be promisingly regarded as spectral signals to distinguish the topologically ordered phases from locally ordered ones. Our findings in this Letter pave the way to achieve ultrafast light source from HHG in strongly correlated materials and to study quantum phase transition by nonlinear optics in strong laser fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.