Abstract

Dyes molecules are the most common pollutants of wastewater in the environment from the textile industry to numbers of technologies include dyeing, printing, and painting procedures. Among membrane-based separation approaches as established methods in the water treatment industry, polymers attracted massive attention in the production of membranes due to their low cost and high-performance filtration of pollutants. However, hydrophobicity and low speed of filtration along with limited decontamination performance against some of the dyes, demand new approaches and membranes to overcome drawbacks points. Herein, a new design introduced including a support layer made by Poly Vinylidene Fluoride (PVDF)/Graphene Oxide (PGO) composite membrane via immersion precipitation process and a thin layer (≤100 nm) of reduced graphene oxide (rGO) deposited (as an active layer) through a simple vacuum filtration method. It has been observed that the presence of the GO sheets in the PGO composite improved the hydrophilicity of the membrane, water flux (from ~90 L m−2 h−1 bar−1 in pristine PVDF to ~1690 L m−2 h−1 bar−1 in PGO), and anti-fouling property. By deposition of rGO laminate on PGO support, dyes separation as high as ~99% can be achieved for most of the cationic and anionic dyes due to electrostatic adsorption, π−π interactions and molecular sieving. This approach opens new insight on hybrid designs for graphene-polymers based membrane toward efficient and fast removal of pollutants from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call