Abstract
Poly(vinylidene fluoride)/graphene oxide (PVDF/GO) nanocomposites are synthesized and their structural, ferroelectric, and pyroelectric properties are investigated. The dielectric spectrum analysis and P-E loop tests indicate that the nanocomposites exhibit enhanced ferroelectric and pyroelectric properties compared with those of poly(vinylidene fluoride) samples. The isothermal crystallization kinetics of PVDF/GO nanocomposites quantitatively determined by differential scanning calorimetry demonstrates that GOs facilitate the crystallization of the PVDF. Dynamic mechanical analyses on the PVDF/GO reveal that the amorphous and crystalline phases of PVDF are modified by the addition of GO sheets. The GO-enhanced formation of crystalline β phase in PVDF could result from the strong interaction between the –C = O groups in GO and the –CF2 groups in PVDF, and the GO-induced ordering of the microstructures of amorphous and crystalline phases. The results suggest that PVDF/GO nanocomposites could be promising dielectric materials used in sensors, transducers, and actuators.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have