Abstract

Multi-Joule level stimulated Brillouin scattering (SBS) pulse compression below the acoustic phonon lifetime is demonstrated with a energy-scalable generator-amplifier setup. Single-pass compression of pulses longer than 20τB (τB as phonon lifetime) to as short as 0.5τB with ~100 mJ pulse energy is realized from the generator, by choosing the focusing length to match approximately with the full length at half maximum of the input Gaussian pulses. The interaction length is identified, both experimentally and numerically, as the key parameter in achieving sub-phonon lifetime pulse compression, with its main mechanism being the steepening of the Stokes pulse trailing edge via energy exchange process. After combining the generator with an amplifier that involves only collimated beams and serves as energy booster, the compression of 9 ns, 2 J pulses at 532 nm into 170 ps, 1.3 J per pulse is achieved in water, with very good stability in both pulse energy and duration. This work demonstrates for the first time the efficient high-energy SBS sub-phonon lifetime pulse compression, and paves a way to the reliable generation of sub-200 ps laser pulses with Joule-level energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call