Abstract

The characteristics of stimulated Brillouin scattering (SBS) in perfluorinated amine media and the experimental structure used in hundreds of picoseconds pulse compression at 532 nm are demonstrated. A two-stage SBS pulse compression structure is adopted for this work. The compact double-cell SBS compression structure and the scattering media FC-70 are chosen to compress the incident light from 9.5 to about 1 ns in the first stage. Then, the light is used as the pumping source for the second pulse compression. In the second stage, using a single-cell SBS structure in a pulse compression system, perfluorinated amine media with different phonon lifetimes, such as FC-3283, FC-40, FC-43, and FC-70, are chosen to run the comparative experimental study. The narrowest compressed pulse times obtained are 294, 274, 277, and 194 ps; they respectively correspond to the above listed media. The average width of the compressed pulse width is 320 ps for FC-3283, with a fluctuation range of 87 ps. For FC-40, the average pulse width is 320 ps, with a fluctuation range of 72 ps. And for FC-43, the average pulse width is 335 ps, with a fluctuation range of 88 ps. However, the average pulse width is only 280 ps for FC-70, with a fluctuation range of 57 ps. The highest energy reflectivity is more than 80% for all of the media. The experimental results show that a two-stage SBS pulse compression system has lower pump energy requirements, thus making it easier to achieve a compressed pulse waveform. The results also show that the shorter the phonon lifetime of the medium, the narrower the obtained compressed pulse width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.