Abstract
Channel-doped AlGaN∕GaN heterostructure field-effect transistors (HFETs) with metal-insulator-semiconductor (MIS) structures have been fabricated to obtain the high drain current density and reduced gate leakage current. A thin bilayer dielectric of Al2O3(4nm)∕Si3N4(1nm) was used as the gate insulator, to simultaneously take advantage of the high-quality interface between Si3N4 and AlGaN, and high resistivity and a high dielectric constant of Al2O3. A MIS HFET with a gate length of 1.5μm has exhibited a record high drain current density of 1.87A∕mm at a gate voltage (Vg) of +3V, which is ascribed to a high applicable Vg and a very high two-dimensional electron gas (2DEG) density of 2.6×1013cm−2 in the doped channel. The gate leakage current was reduced by two or three orders of magnitude, compared with that in normal HFETs without a gate insulator. The transconductance (gm) was 168mS∕mm, which is high in the category of the MIS structure. Channel-doped MIS HFETs fabricated have thus been proved to exhibit the high current density, reduced gate leakage current, and relatively high transconductance, hence, promising for high-power applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.