Abstract

An advanced structure of AlGaN/GaN heterostructure field-effect transistors (HFETs) has been proposed and fabricated, which is characterized by the following structural features: (i) a metal-insulator-semiconductor (MIS) structure using an Al2O3/Si3N4 bilayer gate insulator to reduce the gate leakage current, (ii) a thin AlGaN barrier with a doped channel to simultaneously obtain the high transconductance and high drain current, and (iii) a regrown ohmic structure to reduce the contact resistance. The fabricated devices have been proved to exhibit attractive characteristics such as low gate leakage current, low contact resistance, high drain current, and high transconductance. An HFET with a gate length of 0.1 µm has exhibited a gate leakage current density of below 10-4 A/mm even at a gate voltage of +3 V. It has also exhibited a low contact resistance of 0.3 Ωmm, a high maximum drain current density of 1.23 A/mm, and a high transconductance of 280 mS/mm, which is the highest transconductance ever reported in the category of MIS-HFETs. The cutoff frequency and maximum oscillation frequency, measured with the pad capacitances included, were 52 and 75 GHz, respectively. The proposed structure has thus been proved to be effective in further improving the device performance in GaN-based HFETs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.