Abstract
Hybrid integration of solid-state quantum emitters (QEs) into nanophotonic structures opens enticing perspectives for exploiting multiple degrees of freedom of single-photon sources for on-chip quantum photonic applications. However, the state-of-the-art single-photon sources are mostly limited to two-level states or scalar vortex beams. Direct generation of high-dimensional structured single photons remains challenging, being still in its infancy. Here, we propose a general strategy to design highly entangled high-dimensional spin-orbital single-photon sources by taking full advantage of the spatial freedom to design QE-coupled composite (i.e., Moiré/multipart) metasurfaces. We demonstrate the generation of arbitrary vectorial spin-orbital photon emission in high-dimensional Hilbert spaces, mapping the generated states on hybrid-order Bloch spheres. We further realize single-photon sources of high-dimensional spin-orbital quantum emission and experimentally verify the entanglement of high-dimensional superposition states with high fidelity. We believe that the results obtained facilitate further progress in integrated solutions for the deployment of next-generation high-capacity quantum information technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.