Abstract

Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor Fp = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call