Abstract

Capacitors based on 10 nm antiferroelectric silicon-doped hafnium oxide (Si:HfO2) thin films are investigated in terms of energy storage efficiency, cycling endurance, and reliability. Atomic layer deposition (ALD) on an area-enhanced substrate with large-scale arrays of deep-trench structures is used to significantly increase the energy density, yielding a value of 450 μJ/cm2 and an energy storage efficiency of 67% at a voltage of 3 V. High breakdown fields are obtained, and the reliability measurement indicates that more than 90% of the devices survive three years when subjected to an operating voltage of 3 V. The film stoichiometry is optimized in terms of energy storage properties to achieve an antiferroelectric-like hysteresis loop with low fatigue during electric field cycling and uniform electrical characteristics throughout the 300 mm wafer. Si:HfO2 is a promising material for novel integrated energy storage applications, as it combines CMOS compatible manufacturing, high scalability, and conformal deposition using ALD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.