Abstract

Antiferroelectric materials represented by PbZrO3(PZO) have excellent energy storage performance and are expected to be candidates for dielectric capacitors. It remains a challenge to further enhance the effective energy storage density and efficiency of PZO-based antiferroelectric films through domain engineering. In this work, the effects of three variables, misfit strain between the thin film and substrate, defect dipoles doping, and film thickness, on the domain structure and energy storage performance of PZO-based antiferroelectric materials are comprehensively investigated via phase-field simulations. The results show that applying tensile strain to the films can effectively increase the transition electric field from antiferroelectric to ferroelectric. In addition, the introduction of defect dipoles while applying tensile strain can significantly reduce the hysteresis and improve energy storage efficiency. Ultimately, a recoverable energy density of 38.3 J/cm3 and an energy storage efficiency of about 89.4% can be realized at 1.5% tensile strain and 2% defect dipole concentration. Our work provides a new idea for the preparation of antiferroelectric thin films with high energy storage density and efficiency by domain engineering modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.