Abstract
Cell-type annotation is a time-consuming yet critical first step in the analysis of single-cell RNA-seq data, especially when multiple similar cell subtypes with overlapping marker genes are present. Existing automated annotation methods have a number of limitations, including requiring large reference datasets, high computation time, shallow annotation resolution, and difficulty in identifying cancer cells or their most likely cell of origin. We developed Census, a biologically intuitive and fully automated cell-type identification method for single-cell RNA-seq data that can deeply annotate normal cells in mammalian tissues and identify malignant cells and their likely cell of origin. Motivated by the inherently stratified developmental programs of cellular differentiation, Census infers hierarchical cell-type relationships and uses gradient-boosted \decision trees that capitalize on nodal cell-type relationships to achieve high prediction speed and accuracy. When benchmarked on 44 atlas-scale normal and cancer, human and mouse tissues, Census significantly outperforms state-of-the-art methods across multiple metrics and naturally predicts the cell-of-origin of different cancers. Census is pretrained on the Tabula Sapiens to classify 175 cell-types from 24 organs; however, users can seamlessly train their own models for customized applications. Census is available at Zenodo https://zenodo.org/records/7017103 and on our Github https://github.com/sjdlabgroup/Census.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have