Abstract

Single-cell RNA-seq has emerged as a powerful tool in diverse applications, from determining the cell-type composition of tissues to uncovering regulators of developmental programs. A near-universal step in the analysis of single-cell RNA-seq data is to hypothesize the identity of each cell. Often, this is achieved by searching for combinations of genes that have previously been implicated as being cell-type specific, an approach that is notquantitative and does not explicitly take advantage of other single-cell RNA-seq studies. Here, we describe our tool, SingleCellNet, which addresses these issues and enables the classification of query single-cell RNA-seq data in comparison to reference single-cell RNA-seq data. SingleCellNet compares favorably to other methods in sensitivity and specificity, and it is able to classify across platforms and species. We highlight SingleCellNet's utility by classifying previously undetermined cells, and by assessing the outcome of a cell fate engineering experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.