Abstract
The lipoyl domains of 2-oxo acid dehydrogenase multienzyme complexes and the biotinyl domains of biotin-dependent enzymes have homologous structures, but the target lysine residue in each domain is correctly selected for post-translational modification by lipoyl protein ligase and biotinyl protein ligase, respectively. We have applied two-dimensional heteronuclear NMR spectroscopy to investigate the interaction between the apo form of the biotinyl domain of the biotin carboxyl carrier protein of acetyl-CoA carboxylase and the biotinyl protein ligase (BPL) from Escherichia coli. Heteronuclear multiple quantum coherence NMR spectra of the 15N-labelled biotinyl domain were recorded in the presence and absence of the ligase and backbone amide 1H and 15N chemical shifts were evaluated. Small, but significant, changes in chemical shift were found in two regions, including the tight β-turn that houses the lysine residue targetted for biotinylation, and the β-strand 2 and the loop that precedes it in the domain. When compared with the three-dimensional structure, sequence alignments of other biotinyl and lipoyl domains, and mutagenesis data, these results give a clear indication of how the biotinyl domain is both recognised by BPL and distinguished from the structurally related lipoyl domain to ensure correct post-translational modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.