Abstract
Translation terminates at UAG (amber), UGA (opal), and UAA (ochre) stop codons. In nature, readthrough of stop codons can be substantially enhanced by suppressor tRNAs. Stop-codon suppression also provides powerful tools in synthetic biology and disease treatment. How stop-codon suppression affects bacterial pathogenesis is poorly understood. Here, we show that suppression of UAG codons, but not UGA or UAA codons, attenuates expression of Salmonella Pathogenicity Island 1 (SPI-1) genes, which are required for virulence. Consistently, amber suppression abolishes Salmonella infection of macrophages. Systematic genetic and biochemical analyses further show that amber suppression decreases the activity, but not the level, of the master SPI-1 regulator HilD. Our work thus demonstrates an unexpected selectivity of stop codons in regulating Salmonella virulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.