Abstract

The post-translational attachment of biotin and lipoic acid to specific lysine residues displayed in protruding beta-turns in homologous biotinyl and lipoyl domains of their parent enzymes is catalysed by two different ligases. We have expressed in Escherichia coli a sub-gene encoding the biotinyl domain of E.coli acetyl-CoA carboxylase, and by a series of mutations converted the protein from the target for biotinylation to one for lipoylation, in vivo and in vitro. The biotinylating enzyme, biotinyl protein ligase (BPL), and the lipoylating enzyme, LplA, exhibited major differences in the recognition process. LplA accepted the highly conserved MKM motif that houses the target lysine residue in the biotinyl domain beta-turn, but was responsive to structural cues in the flanking beta-strands. BPL was much less sensitive to changes in these beta-strands, but could not biotinylate a lysine residue placed in the DKA motif characteristic of the lipoyl domain beta-turn. The presence of a further protruding thumb between the beta2 and beta3 strands in the wild-type biotinyl domain, which has no counterpart in the lipoyl domain, is sufficient to prevent aberrant lipoylation in E.coli. The structural basis of this discrimination contrasts with other forms of post-translational modification, where the sequence motif surrounding the target residue can be the principal determinant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.