Abstract

Hierarchically organized nanostructures were fabricated by growing SnO2 nanoparticles on a fluorine-doped tin oxide/glass substrate via a laser ablation method. Cauliflower-like clusters consisting of agglomerated nanoparticles were deposited and aligned with respect to the substrate with a large internal surface area and open channels of pores. The morphological changes of SnO2 nanostructured films were investigated as a function of the oxygen working pressure in the range of 100–500 mTorr. A nanostructured scaffold prepared at an oxygen working pressure of 100 mTorr exhibited the best photoelectrochemical (PEC) performance. A Ti:Fe2O3-SnO2 nanostructured photoanode showed the photocurrent that was 34% larger than that of a Ti:Fe2O3 flat photoanode when the amount of Ti:Fe2O3 sensitizer was identical for the two photoanodes. The larger surface area and longer electron lifetime of the Ti:Fe2O3-SnO2 nanostructured photoanode explains its improved PEC performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call