Abstract
Leaves at the apex of a mature Aphanoregma patens (Hedw.) Lindb. (Physcomitrella patens (Hedw.) Bruch Schimp. in B.S.G.) gametophore differ markedly in size and form from those at its base. To determine how these differences are produced during development, we first examined qualitative and quantitative differences between successive leaves along the stem and among leaves at different developmental stages. Differences between successive leaves were slight and cumulative. Local changes in cell number and size combined to produce a regularly shaped and approximately bilaterally symmetrical leaf suggesting that cell division and cell expansion are regionally regulated and coordinated at the organ level. The midrib and marginal teeth are discrete characters, which were prefigured by changes in cell shape in leaves that lacked these characters. In leaf primordia, cell proliferation was responsible for most of the changes in leaf form and size early in development and may have continued as cell expansion took over as the primary contributor to leaf growth and morphogenesis. Thus, leaf heteroblasty in Physcomitrella probably results from modulation of a single developmental programme by external and/or internal forces, which alter progressively in intensity as a gametophore grows. We applied exogenous cytokinin and auxin separately to growing cultures to explore their effects on leaf growth. Cytokinin and auxin stimulated leaf cell division and leaf cell elongation, respectively. Also, young upper leaves of gametophores exposed to exogenous auxin closely resembled basal leaves of untreated plants. Therefore, endogenous cytokinins and auxins may be among the modulating internal forces involved in leaf morphogenesis and the establishment of leaf heteroblasty.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have