Abstract

Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of higher-dimensional (two-dimensional and three-dimensional) non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies under certain conditions. Our approach allows one to construct Hermitian chiral edge and hinge states from non-Hermitian two-dimensional Chern insulators and three-dimensional second-order topological insulators, respectively. Such Hermitian chiral boundary channels have perfect transmission coefficients (quantized values) and are robust against disorders. Furthermore, a non-Hermitian topological insulator can undergo the topological Anderson insulator transition from a topological trivial non-Hermitian metal or insulator to a topological Anderson insulator with quantized transmission coefficients at finite disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.