Abstract

The generalized bulk-boundary correspondence predicts the existence of the chiral hinge states in three-dimensional second-order topological insulators (3DSOTIs), resulting in a quantized Hall effect in three dimensions. Chiral hinge states in Hermitian 3DSOTIs are characterized by the quantized transmission coefficients with zero fluctuations, even in the presence of disorders. Here, we show that chiral hinge transport in disordered non-Hermitian systems deviates from the paradigm of the Hermitian case. Our numerical calculations prove the robustness of hinge states of disordered non-Hermitian 3DSOTIs. The mean transmission coefficients may or may not equal the number of chiral hinge channels, depending on the Hermiticity of the chiral hinge states, while the fluctuations of transmission coefficients are always nonzero. Such fluctuations are not due to the broken chirality of hinge states but the incoherent scatterings of non-Hermitian potentials. The physics revealed here should also be true for one-dimensional chiral channels in topological materials that support chiral boundary states, such as Chern insulators, three-dimensional anomalous Hall insulators, and Weyl semimetals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.