Abstract
In quantum information processing, using a receiver device to differentiate between two non-orthogonal states leads to a quantum error probability. The minimum possible error is known as the Helstrom bound. In this work, we study the conditions for state discrimination using an alphabet of squeezed coherent states and compare them with conditions using the Glauber-Sudarshan, i.e., standard, coherent states.
Highlights
This work has to be viewed as a natural continuation of a previous exploration [17] of statistical properties and Helstrom Bound for non-standard coherent states
The extension of our previous study to squeezed states is motivated by their relevance on the experimental level, and the importance of finding the best parameters in order to minimize the quantum error
We have performed a numerical analysis and have shown that, for an alphabet of squeezed coherent states, one can always find regions where state discrimination is improved in comparison to the GS-CS alphabet
Summary
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Minimizing the error over all possible POVMs leads to the quantum error probability, known as Helstrom bound [3] This is the smallest physically allowed error probability and defines a criterion for discrimination between transmitted non-orthogonal states. The Helstrom bound for a pair of squeezed coherent states is compared with its GS-CS counterpart in order to determine the conditions for which state discrimination can be improved. Note that at this stage we do not consider noise nor any kind of losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.