Abstract

We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may lead to the formation of a helical electron liquid in single-channel quantum wires, with spin and velocity perfectly correlated. We argue that zero-energy Majorana bound states are formed in various situations when such wires are situated in proximity to a conventional s-wave superconductor. This occurs when the external magnetic field, the superconducting gap, or, most simply, the chemical potential vary along the wire. These Majorana states do not require the presence of a vortex in the system. Experimental consequences of the helical liquid and the Majorana states are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.