Abstract
Heavy-traffic limits are established for the stationary departure process from a GI/GI/1 queue and its variance function. The limit process is a function of the Brownian motion limits of the arrival and service processes plus the stationary reflected Brownian motion (RBM) limit of the queue-length process. An explicit expression is given for the variance function, which depends only on the first two moments of the interarrival times and service times plus the previously determined correlation function of canonical (drift −1, diffusion coefficient 1) RBM. The limit for the variance function here is used to show that the approximation for the index of dispersion for counts of the departure process used in our new robust queueing network analyzer is asymptotically correct in the heavy-traffic limit.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have