Abstract
Several queueing systems in heavy traffic regimes are shown to admit a diffusive approximation in terms of the Reflected Brownian Motion. The latter is defined by solving the Skorokhod reflection problem on the trajectories of a standard Brownian motion. In recent years, fractional queueing systems have been introduced to model a class of queueing systems with heavy-tailed interarrival and service times. In this paper, we consider a subdiffusive approximation for such processes in the heavy traffic regime. To do this, we introduce the Delayed Reflected Brownian Motion by either solving the Skorohod reflection problem on the trajectories of the delayed Brownian motion or by composing the Reflected Brownian Motion with an inverse stable subordinator. The heavy traffic limit is achieved via the continuous mapping theorem. As a further interesting consequence, we obtain a simulation algorithm for the Delayed Reflected Brownian Motion via a continuous-time random walk approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.