Abstract

The gas-phase unimolecular decay kinetics of an anionic, open-cage [60] fullerene derivative encapsulating one water molecule is studied by means of black-body IR radiation induced dissociation (BIRD) in the temperature programmable ion trap of a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The primary reaction channel observed is escape of the water molecule from the fullerenoid bowl. The rate constants for this water loss as a function of temperature are evaluated using the Arrhenius equation to yield an activation energy of 104 ± 4 kJ mol(-1). A complementary ion mobility spectrometry study contrasting the water-encapsulated and the empty fullerene cages finds identical collision cross sections to within experimental error-supporting the structural assignment of this gas-phase anion as an endohedral (i.e. encapsulated) species. Both experiments were compared with quantum-chemical computations which well-describe the transition state for water desorption and the concomitant binding and activation energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.